
Chapter 2

Lines, Planes and Quadric Surfaces

Linear and quadratic functions are the simplest functions. These functions and their zero
sets as subsets of the Euclidean space are studied. Ideas of analytic geometry sketched
in Section 2.1 link these algebraic objects to geometry. Hyperplanes and straight lines
associated to linear functions and systems of linear functions are discussed in Sections
2.2 and 2.3 respectively. Quadratic curves and quadric surfaces associated to quadratic
functions are classified in Section 2.4.

2.1 Algebra and Geometry

Geometry, invented by Ancient Greeks, is a gem in human civilization. In plane geom-
etry geometric figures such as triangles and circles are studied. All results, no matter
how intricate and profound, depend purely on logical deduction from a few axioms. Such
axiomatic approach to a branch of knowledge which solely depends on rigorous reasoning
has inspired the development of not only science but also other fields. Newton’s Mathe-
matica Principia that laid the foundation of mechanics was written in the style of Euclid’s
Elements. On the other side, algebra was a different subject in mathematics. Originated
from arithmetic, numbers were replaced by symbols in the operations. Equations are no
longer solved one by one, instead there are general formulas which yield the desired results
after plugging in the numbers.

Geometry and algebra remained as two separated branches of mathematics for more
than two thousand years until the French scholar René Descartes (1596-1650) introduced
the so-called Cartesian coordinates (or rectangular coordinates). Every point on the
coordinate line corresponds to a real number and every point in the plane corresponds to
an ordered pair. Using the coordinate system, the algebraic equation f(x, y) = 0, where f
is a polynomial as long as algebra is concerned, is turned into a geometric object, namely,

1



2 CHAPTER 2. LINES, PLANES AND QUADRIC SURFACES

the set
{(x, y) : f(x, y) = 0 } ,

in the plane. In this way algebra and geometry are combined in an intimate way.

Given a function in n-many variables, we let

Σ = {x ∈ Rn : f(x) = 0} ,

be its zero set of f . It is also called the solution set of f as one can also view f(x) = 0
as solving an equation. When expressed in the form

Σc = {x ∈ Rn : f(x) = c} ,

which corresponds to the zero set of the function f − c, this set is called the level set
of the function f at c. The terminologies of a zero set, a solution set and a level set
will be used frequently in these notes. Essentially they represent the same things viewed
from different angle. The equation f(x) = 0 falls in the category of algebra when f is a
polynomial but the zero set is a geometric object. The simplest algebraic equation is the
linear equation

n∑
j=1

ajxj = b ,

where not all aj’s vanish. Its solutions form the zero set of the linear function

p(x) =
n∑

j=1

ajxj − b .

The zero set is a straight line when n = 2 and a plane when n = 3. Next to the linear
equations are the quadratic equations, whose general form is given by

n∑
j,k=1

ajkxjxk +
n∑

j=1

bjxj = c ,

where not all ajk’s vanish. When n = 2, its zero sets include circles, ellipses, hyperbolas
and parabolas. Straight lines and circles are the primary objects of study in plane geome-
try. After the introduction of analytic geometry we see that they are associated to linear
and quadratic equations respectively. In the following sections we will study hyperplanes,
straight lines and quadric hypersurfaces using this approach.

2.2 Hyperplanes

Consider the linear equation in Rn, n ≥ 1,

a1x1 + a2x2 + · · ·+ anxn = b , a1, a2, · · · , an, b ∈ R .
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Here it is implicitly assumed at least one of the coefficients aj’s is non-zero. It is called a
homogeneous linear equation when b = 0 and a non-homogeneous linear equation
when b 6= 0. Using the dot product, we can write a linear equation in the form

a · x = b , a ∈ Rn , b ∈ R .

Given a linear equation, its solution set

{x = (x1, x2, · · · , xn) ∈ Rn : a1x1 + a2x2 + · · ·+ anxn = b },

is called the hyperplane associated to the equation. When n = 2, the hyperplane is
called the straight line or simply the line associated to the equation. When n = 3, it
is called the plane associated to the equation. Our definition here illustrates the idea of
Descartes that an algebraic concept has a geometric name. In fact, we may define the
plane in a purely geometric way. First consider the plane passing through the origin.
Roughly speaking, it should consist of all points (position vectors) that are perpendicular
to fixed non-zero vector pointing in the normal direction of the plane. In symbols, letting
a = (a1, a2, a3) be the normal vector, the plane is given by the set{

x = (x1, x2, x3) ∈ R3 : a · x = 0
}
,

which coincides with our definition of a plane associated to the homogeneous equation
a1x1 +a2x2 + · · ·+anxn = 0. The normal vector is not unique; when a is a normal vector,
any non-zero multiple of it is also a normal vector. For a plane not passing through the
origin, we translate the origin to any fixed point on the plane. Thus, letting the point be
p, the plane should consist of all points satisfying{

x = (x1, x2, x3) ∈ R3 : a · (x− p) = 0
}
,

which is the same as{
x = (x1, x2, x3) ∈ R3 : a · x = b

}
, b =

∑
j

ajpj .

We have shown that a plane not passing through the origin is associated to a non-
homogeneous linear equation. The same reasoning applies to n = 2 which shows that
the geometric notion of a straight line coincides with the algebraic definition given above.
When n ≥ 4, figures cannot be drawn but the idea is still valid. A hyperplane passing
through the origin is associated a homogeneous linear equation and the hyperplane asso-
ciated to a non-homogeneous equation not passing through the origin.

How to write down the equation of a hyperplane? The principle is very simple: A
hyperplane is completely determined when its normal vector and a point on it are known.
In other words, letting a = (a1, a2, · · · , an) be a vector that is perpendicular to the plane
and p a point on the plane, the equation of the hyperplane is given by

a · (x− p) = 0 ,
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or

a1x1 + a2x2 + · · ·+ anxn = b, b = a · p .

Example 2.1. Find the equation of the plane which is parallel to the plane 2x−7y+z = 0
and passing through the point (1, 2, 3). By parallel we mean these two planes have the
same normal direction. Therefore, the sought-after plane has normal (2,−7, 1) and, as it
passes through (1, 2, 3), b = (2,−7, 1) · (1, 2, 3) = −9. The equation for the plane is given
by

(2,−7, 1) · ((x, y, z)− (1, 2, 3)) = 0 ,

that is, 2x− 7y + z = −9.

Example 2.2. Find the straight line passing through (−1, 2) and is perpendicular to the
straight line 2x + 5y = −9. The normal direction of the line 2x + 5y = −9 is (2, 5),
so the normal direction of our straight line is (5,−2) (you may choose (−5, 2) as well).
Therefore, the equation of our straight line is

(−5, 2) · ((x, y)− (−1, 2)) = 0, or − 5x+ 2y = 9 .

Sometimes we are asked to find the equation of the hyperplane passing certain points.
For n = 3, it is apparent three points determine a plane uniquely unless they are collinear.
There points p,q, r ∈ R3 are collinear if αp + βq + γr = 0 for some non-zero numbers
α, β, γ. In higher dimension, it is more tedious to describe the conditions that n points
determined a hyperplane in geometric terms. However, using linear algebra, we see that
n points determine a hyperplane uniquely provided they are linearly independent.

Given linearly independent p1,p2, · · · ,pn ∈ Rn, in order to determine the equation of
the hyperplane passing through these points it suffices to determine its normal direction,
say a, which should satisfy the linear system

(p1 − pn) · a = 0 , (p2 − pn) · a = 0 , · · · , (pn−1 − pn) · a = 0 .

This is a system of n unknowns and n − 1 equations. As the number of equations
is less than the number of unknowns, it is always solvable. When the n − 1 points
pj − pn, j = 1, · · · , n − 1, are linearly independent, it is known that the solution is
one dimensional, that is, it is spanned by a single vector, and we can take it to be the
normal. The problem of determining the hyperplane is reduced to solving a linear system.

When n = 3, we can take advantage of the cross product. Now we need to solve
(p1 − p3) · a = 0 and (p2 − p3) · a = 0. Recalling u · (u × v) = v · (u × v) = 0, we see
that a normal direction is given by (p1 − p3)× (p2 − p3).
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Theorem 2.1. The equation for the plane passing three non-collinear points p1,p2,p3 is
given by (

(p1 − p3)× (p2 − p3)
)
·
(
(x, y, z)− p3

)
= 0 .

Example 2.3. Find the equation of the plane passing through the points

(0, 1, 1), (2, 3, 0), (2, 3, 4) .

We compute

((0, 1, 1)− (2, 3, 4))× ((2, 3, 0)− (2, 3, 4)) = (−2,−2,−3)× (0, 0,−4) = (8,−8, 0) ,

so the equation is given by

(8,−8, 0) · ((x, y, z)− (2, 3, 4)) = 8(x− 2)− 8(y − 3) + 0(z − 4) = 0,

that is, x − y + 1 = 0 . We are free to choose which point to be subtracted from, for
instance, now we take (0, 1, 1) to replace (2, 3, 4). Then

((2, 3, 0)− (0, 1, 1))× ((2, 3, 4)− (0, 1, 1)) = (2, 2− 1)× (2, 2, 3) = (8,−8, 0) ,

so the equation is

(8,−8, 0) · ((x, y, z)− (2, 3, 0)) = 8(x− 2)− 8(y − 3)− 0z = 0 ,

which yields the same equation x− y + 1 = 0.

Example 2.4. Find the equation of the plane passing through the points

(1, 1, 1), (2,−1, 0), (0,−3, 4) .

Although the cross product approach may be used, let us follow the general approach.
First, we bring (1, 1, 1) to the origin.

(2,−1, 0)− (1, 1, 1) = (1,−2,−1), (0,−3, 4)− (1, 1, 1) = (−1,−4, 3) .

The normal direction of the plane (a, b, c) is perpendicular to these two vectors,

(1,−2,−1) · (a, b, c) = 0, (−1,−4, 3) · (a, b, c) = 0 ,

which gives
a− 2b− c = 0, a+ 4b− 3c = 0 .

Using c as the parameter, we solve this system to get a = 5c/3 and b = c/3. That is, the
vector (5/3, 1/3, 1)c is perpendicular to the plane. Taking c = 3, our plane satisfies the
equation

(5, 1, 3) · ((x, y, z)− (1, 1, 1)) = 0, i.e., 5x+ y + 3z = 9 .



6 CHAPTER 2. LINES, PLANES AND QUADRIC SURFACES

Next we derive a formula for the distance from a point to a hyperplane.

Theorem 2.2. Let p ∈ Rn and a · x = b be a hyperplane in Rn. The distance from p to
the hyperplane is given by

|a · p− b|
|a|

.

Proof. Our derivation of the formula is based on the observation that the distance is
equal to the length of the line segment from p perpendicular to the hyperplane. Let q
be the point on the plane so that p− q is perpendicular to the hyperplane. We have two
equations, namely,

a · q = b , p− q = λa , λ ∈ R .

The first equation means q is a point on the plane and the second equation means p− q
points to the normal direction of the hyperplane. We plug q = p−λa in the first equation
to get

a · (p− λa) = b ,

which yields

λ =
a · p− b
|a|2

.

It follows that

q = p− λa = p− a · p− b
|a|2

a .

As the distance from p to the hyperplane is given by |p−q|, we conclude that it is given
by

|a · p− b|
|a|

.

Corollary 2.3. Let a · x = b and a · x = c be two parallel planes. The distance between
them is given by |b− c|/|a|.

Here distance between two parallel planes is the minimal distance between the points
from different planes.

Proof. The distance from a point p on the second plane to the first one is given by
|a · p− b|/|a|, and the formula follows after noting a · p = c .

Let H+ : a · x > b and H− : a · x < b. Then the origin belongs to H− when b > 0 and
to H+ when b < 0. The normal vector a points from H− to H+. Plugging p = 0 in this
formula, we see that the distance from the origin to H is given by |b| when a is a unit
vector. This gives a meaning to b.
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Example 2.5. Let H : 2x + 5y − z + w = 2 be a hyperplane in R4 and P (1, 2, 0,−3) a
point lying outside the hyperplane.

(a) Find the point on the hyperplane that realizes the distance between P and H.

(b) Find the distance from P to H.

We apply the formulas:

a · p = (2, 5,−1, 1) · (1, 2, 0,−3) = 9,

and

λ =
a · p− b
|a|2

=
9− 2

31
=

7

31
,

hence

q = p− λa = (1, 2, 0,−3)− 7

31
(2, 5,−1, 1) =

1

31
(17, 27, 7,−100) ,

which is the answer to (a) and

|p− q| = 7√
31

,

is the answer to (b).

We introduce one more terminology. Let H : a · x = 0 be a hyperplane passing
through the origin and some p ∈ Rn. The projection of p on the hyperplane H is the
point q sitting on H so that p− q is perpendicular to H, that is,

(p− q) · a = 0 , a · q = 0.

From the proof above we see that the projection of p on H is given by

q = p− a · p
|a|2

a .

2.3 Straight Lines

In the spirit of analytic geometry, one would like to define straight lines in terms of linear
equations. A moment’s reflection shows that any possible definition would depend on the
dimension. In n = 2, a straight line is the solution set of a single linear equation as seen
in the last section. However, for n = 3, it arises as the intersection of two planes, that is,
it is the solution set of the system of two linear equations{

a1x+ b1y + c1z = d1,

a2x+ b2y + c2z = d2 .
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In fact, to avoid these two planes being parallel so the solution set becomes empty, it has
to postulate that these two planes are linearly independent (more precisely, they do not
have the same normal direction). In general, for n ≥ 2, we may define a straight line to be
the solution set of n−1-many linearly independent hyperplanes. However, such approach
is a little bit indirect and a more direct one like the parametric representation discussed
below is preferred.

As a straight line is determined by its direction and a point it passes through. Here
we will adapt a definition that is motivated by kinetics where s straight lines is viewed
as the trajectory of a particle moving along the same direction in constant speed. To be
specific, given p ∈ Rn and a non-zero ξ ∈ Rn, a straight line passing through p along
the direction determined by ξ is given by the set of points

{x ∈ Rn : x = p + ξt , t ∈ R} .

As t could be any real number, ξ in the definition would be fine as long as it is non-zero.
However, it would degenerate into the single point {p} when ξ is the zero vector. Hence
ξ cannot be the zero vector in the definition. Also, it is not necessary to be a unit vector.
For the set is the same as{

x ∈ Rn : x = p +
ξ

|ξ|
t , t ∈ R

}
.

From a kinetic point of view, the particle moves from p at t = 0 along the line in the
direction of ξ/|ξ|. In some old texts, the equation of a straight line is expressed as

x1 − p1
ξ1

=
x2 − p2
ξ2

= · · · = xn − pn
ξn

,

which is an alternate description that the straight line passing p with slope ξ. In fact,
letting t be the common ratio, this expression can be converted to x = p + tξ.

Now we show the two approaches are equivalent.

Theorem 2.4. Any straight line is the intersection of two linearly independent planes in
R3. Conversely, the solution set of two linear equations with different normal directions
is a straight line for some p and ξ.

Proof. * Given a straight line p+ tξ, we can find two linearly independent vectors u and
v satisfying u · ξ = 0,v · ξ = 0. The plane passing through p with normal u is given by
the equation u · (x − p) = 0. Similarly, the plane passing through p with normal v is
given by v · (x − p) = 0. The solution set of these two equation consists of all points x
satisfying u · (x−p) = 0, v · (x−p) = 0 simultaneously. Points on the straight line are of
the form x = p+ tξ. By u · (x−p) = u · tξ = tu ·ξ = 0 and v · (x−p) = v · tξ = tv ·ξ = 0
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we see that the straight line is contained in the solution set. On the other hand, letting
x be a point in the solution set, the conditions u · (x−p) = 0, v · (x−p) = 0 mean that
x− p is perpendicular to u and v, hence it must point to the direction of ξ. Thus, there
is some t1 such that x− p = t1ξ, i.e., x = p + t1ξ, x is a point on the straight line. We
have shown that the straight line and the solution set coincide.

Next, consider the linear system{
a1x+ b1y + c1z = d1,

a2x+ b2y + c2z = d2 ,

where (a1, b1, c1) and (a2, b2, c2) are linearly independent. The matrix[
a1 b1 c1
a2 b2 c2

]
has rank 2. From linear algebra there must be at least one non-singular 2× 2-submatrix.
Assuming it is from the first two columns and rows, we move the z-terms to the right and
write the system as {

a1x+ b1y = −c1z + d1,

a2x+ b2y = −c2z + d2 .

Solve this system to get x = α+ βz and y = γ + δz for some α, β, γ, δ. Thus the solution
set consists of (α, γ, 0) + (β, δ, 1)z, z ∈ R, that is, it is a straight line.

Example 2.6. Find the expression for the straight lines which is the intersection of the
planes {

x+ y + z = 1,

2x− y + 6z = 5, .

We may take z as the “time parameter” and write the system as{
x+ y = 1− z,
2x− y = 5− 6z.

Solve this equation to get

x =
1

3
(6− 7z) , y =

1

3
(−3 + 4z) .

Writing t = z, the straight line is given by

(x, y, z) =

(
1

3
(6− 7t),

1

3
(−3 + 4t), t

)
= (2,−1, 0) +

(
−7

3
,
4

3
, 1

)
t , t ∈ R .

It passes through (2,−1, 0) at t = 0 with constant velocity (−7/3, 4/3, 1).
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Alternatively, we can take y as the time parameter. We write{
x+ z = −y + 1,

2x+ 6z = 5 + y,

which gives

x =
1

4
(1− 7y) , z =

1

4
(3 + 3y) ,

so the straight line can be described as

(x, y, z) =

(
1

4
, 0,

3

4

)
+

(
−7

4
, 1,

3

4

)
t , t ∈ R .

Observing (
−7

4
, 1,

3

4

)
=

3

4

(
−7

3
,
4

3
, 1

)
,

we see that they represent the same set. Only now the particle starts at (1/4, 0, 3/4)
with constant velocity (−7/4, 1, 3/4). Although in these two formulas the motions are
different, the geometry is the same.

It is not hard to see that either x, y or z can be chosen to be the time parameter as
long as the 2 × 2-matrix obtained after moving the chosen variable to the other side is
non-singular.

Let x,y ∈ Rn. The straight line passing through x and y is given by x + t(y− x) =
(1− t)x+ ty, t ∈ R. When t = 0, it gives the point x and, when t = 1, it is y. You could
image this is the path of a particle moving from x to y in constant speed so that it arrives
at y at a unit time. Likewise we can use the expression y+t(x−y) which the particle now
moves from y to x. In particular, we see the line segment between x and y corresponds
to the time interval [0, 1]. This way of describing a line segment is very useful as we will see.

Example 2.7. Consider the triangle whose vertices are A(0, 0), B(2, 0), C(1, 1). Find

(a) Its medium from A,

(b) Its height from A,

(c) * Its bisector from A.

(a) The midpoint of the side BC is given by ((2, 0)+(1, 1))/2 = (3, 1)/2. The vector (3, 1)
points to the direction of the median. As the median passes A(0, 0), the median is given
by the set {

(3, 1)t : t ∈
[
0,

1

2

]}
.
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(b) Let AD be the height from A where D is on the side BC. Let D be (2, 0) + t((1, 1)−
(2, 0)) = (2− t, t) where t is to be specified. The direction of AD is perpendicular to BC

whose direction points in (1, 1)− (2, 0) = (−1, 1). Noting
−−→
AD⊥

−−→
BC, we have

(−1, 1) · (2− t, t) = 0 ,

which is readily solved to get t = 1. We conclude that D = C and the height coincides
with AC. In other words, this is a perpendicular triangle with the right angle at C.

(c)* Let θ = ∠CAB. The lengths of AB and AC are given by 2 and
√

2 respectively. By
the Cosine Law,

cos θ =
(2, 0) · (1, 1)

2
√

2
=

√
2

2
.

Using the half angle formula,

cos
θ

2
=

(
1 + cos θ

2

)1/2

= a , a =

√
2 +
√

2

2
.

The direction of the bisector is given by(
cos

θ

2
, sin

θ

2

)
= (a, b), b =

√
1− a2 =

√
2−
√

2

2
.

On the other hand, BC is given by (2, 0) + ((1, 1) − (2, 0))s = (2 − s, s), s ∈ [0, 1]. The
line (0, 0) + t(a, b) hits BC at t(a, b) = (2− s, s). Solving for t and s, we get t = 2/(a+ b)
and s = 2b/(a+ b). We conclude that the bisector at A is given by{

(a, b)t : t ∈
[
0,

2

a+ b

]}
.

2.4 Quadric Hypersurfaces

A quadric hypersurface is defined as the zero set or the solution set Σ of a quadratic
equation

n∑
j,k=1

ajkxjxk +
n∑

j=1

bjxj + c = 0,

where not all ajk’s are zero. Let us start with quadratic curves, that is, n = 2. We write
the equation as

ax2 + 2bxy + cy2 + dx+ ey = f , (2.1)

and denote its solution set by γ. Alternatively we can express the equation in the form

(x, y)

[
a b
b c

] [
x
y

]
+ dx+ ey = f .
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To study the geometry of γ we simplify the equation by rotating the coordinates which
do not alter the shape of γ. The following theorem will be used to classify the curves
defined by a quadratic equation.

Theorem 2.5. For any symmetric 2× 2-matrix

A =

[
a b
b c

]
,

there is a rotation

R =

[
cos θ − sin θ
sin θ cos θ

]
such that

R′AR =

[
cos θ sin θ
− sin θ cos θ

] [
a b
b c

] [
cos θ − sin θ
sin θ cos θ

]
=

[
λ 0
0 µ

]
,

where λ and µ are eigenvalues of the symmetric matrix. Consequently, letting[
x
y

]
=

[
cos θ − sin θ
sin θ cos θ

] [
u
v

]
,

we have

ax2 + 2bxy + cy2 = λu2 + µv2 .

Proof.

R′AR =

[
cos θ sin θ
− sin θ cos θ

] [
a b
b c

] [
cos θ − sin θ
sin θ cos θ

]

=

a cos2 θ + 2b sin θ cos θ + c sin2 θ b cos 2θ +
c− a

2
sin 2θ

b cos 2θ +
c− a

2
sin 2θ a sin2 θ + c cos2 θ − b sin 2θ

 .

We can always choose some θ0 ∈ [0, π) such that

b cos 2θ0 +
c− a

2
sin 2θ0 = 0,

so that R′AR = D where D is a diagonal matrix

D =

[
λ 0
0 µ

]
.

From
R′AR e1 = λe1, R′AR e2 = µe2 ,



2.4. QUADRIC HYPERSURFACES 13

we see that

Ax = λx, Ay = µy ,

where

x = Re1, y = Re2 .

It shows that λ and µ are in fact the eigenvalues of A.

By introducing the new variables u, v as described in this theorem, our quadratic
equation turns into another quadratic equation

λu2 + µv2 + du+ ev = f , (2.2)

for different d and e. Since the shape of γ remains unchanged under rotations, it suffices
to study γ by assuming the equation is (2.2).

Theorem 2.6. Consider equation (2.1).

(1) If λ and µ are of the same sign, there is a Euclidean motion under which the equation
assumes the form

|λ|x2 + |µ|y2 = c , c ∈ R.

Consequently, γ is either an ellipse (c > 0), a point (c = 0) or an empty set (c < 0).

(2) If λ and µ are of different sign, there is a Euclidean motion under which the equation
assumes the form

|λ|x2 − |µ|y2 = c , c ∈ R .

Consequently, γ is either a hyperbola (c 6= 0), or the union of two intersecting straight
lines (c = 0).

(3) If one of λ, µ is zero, there is a Euclidean motion under which the equation assumes
the form

|λ|x2 + ay = c , a, c ∈ R .

Consequently, γ is either a parabola (a 6= 0), two parallel straight lines (a = 0, c > 0),
the empty set (a = 0, c < 0) or a straight line (a = c = 0).

Proof. By the previous theorem, we may assume that the equation is already in the form
(2.2).

If λ and µ are of the same sign. By multiplying −1 to this equation if necessary, we
may assume they are positive. By completing square, it becomes

λ

(
x+

d

2λ

)2

+ µ

(
y +

e

2µ

)2

= g , g = f +
d2

2λ
+
e2

4µ
.
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Therefore, after a translation

u = x+
d

2λ
, v = y +

e

2µ
,

we achieve at λu2 + µv2 = g. When g > 0, this is the standard form for an ellipse. When
g = 0, it degenerates into a single point. When g < 0, this equation has no solution, so γ
is an empty set.

If λ and µ are of opposite sign. By multiplying −1 to this equation if necessary, we
may assume λ is positive and µ is negative. Following the discussion in the first case, we
arrive at |λ|u2 − |µ|v2 = g. When g 6= 0, γ is a hyperbola. When g = 0, it is the union of
the straight lines defined by√

|λ|u+
√
|µ|v = 0 ,

√
|λ|u−

√
|µ|v = 0 .

If one of λ, µ is zero, by switching the x- and y-axis if necessary, we may assume λ > 0
and µ = 0 so that the equation becomes

λx2 + dx+ ey + f = 0 ,

for some new f . A partial completing square yields

λ

(
x+

d

2λ

)2

+ ey + f − d2

4λ
= 0 .

Hence, after a horizontal translation, the equation becomes λx2 +ey = f . It is a parabola
as long as e 6= 0. When e = 0 and f > 0, γ consists of two vertical lines x = ±

√
f . It is

empty when e = 0 and f < 0. It is the y-axis when e = f = 0.

We have completely classified the curves defined by quadratic equations of two vari-
ables.

Remark 2.1. The switching of coordinates is realized by the linear transformation
x 7→ y, y 7→ x. It is obtained by a rotation of 90◦ followed by a reflection of the y-axis. It
is again a Euclidean motion.

Remark 2.2. λ and µ are of the same sign iff ac− b2 > 0. They are of opposite sign iff
ac− b2 < 0. One of λ, µ vanishes iff ac− b2 = 0. This follows from the relation

ac− b2 = detA = λµ .

Steps of transforming a quadratic equation into the “standard form” are:
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Step 1. Solve the characteristic equation

det

[
a− λ b
b c− λ

]
= 0 ,

to determine the two eigenvalues λ1 and λ2 including multiplicity.

Step 2. Solve the linear systems [
a b
b d

] [
u1
v1

]
= λ1

[
u1
v1

]
and

[
a b
b d

] [
u2
v2

]
= λ2

[
u2
v2

]
to obtain two orthogonal unit eigenvectors (u1, v1) and (u2, v2).

Step 3. The change of variables [
x
y

]
=

[
u1 u2
v1 v2

] [
u
v

]
will convert the equation in x, y into one in u, v without mixed term uv.

Step 4. Completing square to bring it into the standard form.

Example 2.8. Transform the equation

2xy − x+ 3y = 1

to the standard form and determine its solution set. We have a = c = 0 and b = 1 so
ac − b2 = −1 < 0 and there are two eigenvalues with opposite sign. In fact, the charac-
teristic polynomial is λ2 − 1 = 0 so the two eigenvalues are 1 and −1 with corresponding
eigenvector (1, 1) and (−1, 1) so that

R =

√
2

2

[
1 −1
1 1

]
.

This is the rotation by 45◦. Note that the factor
√

2/2 is for normalization. Letting[
x
y

]
=

√
2

2

[
1 −1
1 1

] [
u
v

]
,

that is,

x =

√
2

2
(u− v), y =

√
2

2
(u+ v) ,
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2xy − x+ 3y − 1 = u2 − v2 −
√

2

2
(u− v) +

3
√

2

2
(u+ v)− 1

= u2 − v2 +
√

2u+ 2
√

2v − 1

= (u+

√
2

2
)2 − (v −

√
2)2 +

1

2
,

where in the last step we complete square. Letting x′ = u +
√

2 and y′ = v +
√

2, the
equation finally achieves the standard form x2 − y2 = −1

2
which is a hyperbola after

replacing (x′, y′) by (x, y).

In fact, since the key step is to get rid of the mixed term xy, a short cut is: we simply
set

x = au+ bv, y = cu+ dv ,

in the equation to get

2(au+ bv)(cu+ dv)− (au+ cv) + 3(cu+ dv)− 1 = 0 .

The mixed term is given by 4(ad+ bc) which can be killed off by choosing a = d = b = 1
and c = −1. The resulting equation becomes −2u2 + 2v2− (u− v) + 3(−u+ v)− 1 , that
is, −2(u+ 1)2 + 2(v + 1)2 − 1 = 0 . Setting x = v + 1 and y = u+ 1, we arrive at

x2 − y2 − 1

2
= 0 .

The hyperbola obtained in this way is similar but not congruent to the hyperbola de-
scribed by the original equation. But it serves the purpose if one just wants to know the
shape of the zero set of the equation. Henceforth, any equation without mixed terms and
lower order terms can be called a standard form of the equation.

The situation for all other dimensions is similar, thanks to the following basic result
in linear algebra: For any symmetry matrix A, there is an orthogonal matrix R such
that R′AR = D where D is a diagonal matric whose diagonal elements are precisely the
eigenvalues of A (counting multiplicity), see the Comments below. Using this result, a
suitable Euclidean motion would bring the general quadratic equation into

n∑
j=1

λjx
2
j +

n∑
j=1

bjxj + c = 0 ,

and further classification according to the sign of the eigenvalues can be carried out as in
the two variable case. Here let us state what happens in n = 3.

First of all, under a Euclidean motion the equation is of the form

λx2 + µy2 + νz2 + dx+ ey + fz = g . (2.3)

We have
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Theorem 2.7. Consider equation (2.3).

(a) If λ, µ, ν are of the same sign, there is a Euclidean motion to transform (2.3) to

|λ|x2 + |µ|y2 + |ν|z2 = g , g ∈ R . (ellipsoid)

(b) If two of λ, µ, ν are of the same sign and one in opposite sign, there is a Euclidean
motion to transform (2.3) to

|λ|x2 + |µ|y2 − |ν|z2 = g , g ∈ R .

(hyperboloid of one sheet g > 0, elliptical cone g = 0, hyperboloid of two sheets g < 0)

(c) If two of λ, µ, ν are of the same sign and the third one is zero, there is a Euclidean
motion to transform (2.3) to

|λ|x2 + |µ|y2 + fz = g , f, g ∈ R . (elliptical paraboloid)

(d) If one of λ, µ, ν is zero and the other two are in opposite sign, there is a Euclidean
motion to transform (2.3) to

|λ|x2 − |µ|y2 + fz = g , f, g ∈ R . (hyperbolic paraboloid)

(e) If exactly two of λ, µ, ν are zero, there is a Euclidean motion to transform (2.3) to

|λ|x2 + ey = g , e, g ∈ R .

This theorem can be established by following the same reasoning as the two dimen-
sional case. We point out that in (e) one would get λx2 +ey+fz = g, but then a rotation
of the yz-plane cancels the z-term.

We have studied planes, straight lines, quadratic curves and quadric surfaces regarding
them as the zero sets of a single equation or a system of linear equations. It is natural to
investigate what geometric objects one would obtain as the zero sets for more complicated
equations or systems. We will return to this question in Chapter 6 after we have equipped
with the knowledge of differentiation theory.

Comments on Chapter 2

2.1 The standard form of quadratic curves are:

x2

a2
+
y2

b2
= 1 , a, b > 0 (ellipse) ,

x2

a2
− y2

b2
= 1 , a, b > 0 (hyperbola) ,

x = 2py2 , p ∈ R , (parabola) .
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We will say more about these curves in Chapter 3.

2.2. We will use frequently a theorem from linear algebra concerning the diagonalization
of a symmetric matrix. To state first recall that an orthogonal matrix is an n× n-matrix
whose columns are unit vectors orthogonal to each other, that is, R = (rij) satisfies for
each i, k,

∑n
j rjirjk = δjk. In terms of the matrix product, letting R′ be the transpose

matrix of R, an orthogonal matrix satisfies R′R = RR′ = Id .

Principal Axis Theorem. Let A = (aij) be a symmetric matrix. There exists an
orthogonal matrix R such that R′AR = D where D is diagonal.

In Section 7.5 a proof of this theorem based on calculus will be given. The main step
in the proof is to establish the following fact: There are λ1 ≤ λ2 ≤ · · · ≤ λn such that


a11 · · · a1n
· · · · ·
· · · · ·
an1 · · · ann



uk1
·
·
ukn

 = λk


uk1
·
·
ukn

 ,

for some non-zero vector uk. Each uk is a unit eigenvector associated to the eigenvalue λk.
Eigenvectors to different eigenvalues are perpendicular to each other and those associated
to the same eigenvalue can be chosen to be perpendicular. In this way the matrix

R =


u11 · · · un1
· · · · ·
· · · · ·
u1n · · · unn

 .

is orthogonal and satisfies the requirement in the theorem.

This theorem can be used to simplify the quadratic function

q(x) =
n∑

i,j=1

aijxixj .

In fact, by replacing both aij and aji by (aij + aji)/2, we may assume A = (aij) is a
symmetric matrix. Consequently there is an orthogonal matrix R = (rij) and a diagonal
matrix D = (λkδjk) so that R′AR = D, that is,

∑
k,m

r′ikakmrmj = λjδij.
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Therefore, by the change of variables x = Ry, we have

q(x) =
∑
i,j

aijxixj

=
∑
i,j

aij
∑
k,m

rikykrjmym

=
∑
k,m

∑
i,j

r′kiaijrjmykym

=
∑
k,m

λkδkmykym

=
∑
k

λky
2
k .

The quadratic function assumes a very simple form in the new variable y.

Supplementary Reading

1.3 and 1.4 in [Au].


